Classifying Relaxed Highest-Weight Modules for Admissible-Level Bershadsky–Polyakov Algebras

نویسندگان

چکیده

The Bershadsky-Polyakov algebras are the minimal quantum hamiltonian reductions of affine vertex associated to $\mathfrak{sl}_3$ and their simple quotients have a long history applications in conformal field theory string theory. Their representation theories therefore quite interesting. Here, we classify relaxed highest-weight modules, with finite-dimensional weight spaces, for all admissible but nonintegral levels, significantly generalising known classifications [arxiv:1005.0185, arxiv:1910.13781]. In particular, prove that $\mathsf{k}$ always rational category $\mathscr{O}$, whilst they admit nonsemisimple modules unless $\mathsf{k}+\frac{3}{2} \in \mathbb{Z}_{\ge0}$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highest-weight Theory: Verma Modules

We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or, equivalently, of a compact Lie group). It turns out that such representations can be characterized by their “highest-weight”. The first method we’ll consider is purely Lie-algebraic, it begins by constructing a universal representation with a given high...

متن کامل

Laplace transform and unitary highest weight modules

The unitarizable modules in the analytic continuation of the holomorphic discrete series for tube type domains are realized as Hilbert spaces obtained through the Laplace transform.

متن کامل

Characterization of Simple Highest Weight Modules

We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.

متن کامل

Characters of Highest Weight Modules over Affine Lie Algebras Are Meromorphic Functions

We show that the characters of all highest weight modules over an affine Lie algebra with the highest weight away from the critical hyperplane are meromorphic functions in the positive half of the Cartan subalgebra, their singularities being at most simple poles at zeros of real roots. We obtain some information about these singularities. 0. Introduction 0.0.1. Let g be a simple finite-dimensio...

متن کامل

Computing with Quantized Enveloping Algebras: PBW-Type Bases, Highest-Weight Modules and R-Matrices

Quantized enveloping algebras have been widely studied, almost exclusively by theoretical means (see, for example, De Concini and Procesi, 1993; Jantzen, 1996; Lusztig, 1993). In this paper we consider the problem of computing with a quantized enveloping algebra. For this we need a basis of it, along with a method for computing the product of two basis elements. To this end we will use so-calle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2021

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-021-04008-y